Surface Integrity of Cryogenically Finished Additively Manufactured and Conventional Ti-6Al-4V Alloy

نویسندگان

چکیده

Additive manufacturing (AM) is used for the fabrication of solid components complex geometries customized applications. However, AM-fabricated frequently require finishing operations such as abrasive grinding, which causes a different surface characteristic compared to conventionally manufactured components. Thus, it essential study effect process parameters and heat treatment on quality AM because these may behave differently conventional In this study, characteristics samples Ti-6Al-4V with cryogenically cooled operation that processed samples. The under investigation were fabricated by two methods, namely, Direct Metal Laser Sintering (DMLS) processing. processes characteristics, microhardness, roughness, X-ray diffraction (XRD), mechanical properties has been studied. average roughness from cryogenic grinding was reduced 27.25% 23.15% AM, 30.08% 29.13% samples, dry moist conditions, respectively. finished DMLS showed increase microhardness 14.07%, 14.27%, 17.54% 17.48%, 8.06%, 38.68%, in dry, moist, DOC table feed increased, greater peak broadening observed. XRD indicates significant level plastic deformation occurred suggests are more sensitive process. Compared found have smallest grains layer just below surface. impact cooling higher

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy

A selective laser melting (SLM)-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur...

متن کامل

Data on the surface morphology of additively manufactured Ti-6Al-4V implants during processing by plasma electrolytic oxidation

Additively manufactured Ti-6Al-4V implants were biofunctionalized using plasma electrolytic oxidation. At various time points during this process scanning electron microscopy imaging was performed to analyze the surface morphology (van Hengel et al., 2017) [1]. This data shows the changes in surface morphology during plasma electrolytic oxidation. Data presented in this article are related to t...

متن کامل

Precision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication

In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollutionpreventing ma...

متن کامل

Laser Powder Cladding of Ti-6Al-4V α/β Alloy

Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully mad...

متن کامل

Mechanical Surface Treatments of Ti-6Al-4V Miniplate Implant Manufactured by Electrical Discharge Machining (TECHNICAL NOTE)

Present work aims at multi-mechanical surface treatment of Ti-6Al-4V based-miniplate implant manufactured by electrical discharge machining (EDM) for biomedical use. Mechanical surface treatment consists of consequent use of ultrasonic cleaning, rotary tumbler polishing, and brushing. Surface layers are analyzed employing scanning electron microscopy and energy dispersive X-ray spectroscopy. Al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Metals

سال: 2023

ISSN: ['2075-4701']

DOI: https://doi.org/10.3390/met13040693